Direct neural network application for automated cell recognition.
نویسندگان
چکیده
BACKGROUND Automated cell recognition from histologic images is a very complex task. Traditionally, the image is segmented by some methods chosen to suit the image type, the objects are measured, and then a classifier is used to determine cell type from the object's measurements. Different classifiers have been used with reasonable success, including neural networks working with data from morphometric analysis. METHODS Image data of cells were input directly into neural networks to determine the feasibility of direct classification by using pixel intensity information. Several types of neural network and their ability to work with cells in a complex patterned background were assessed for a variety of images and cell types and for the accuracy of classification. RESULTS Inflammatory cells from animal biomaterial implants in rabbit paravertebral muscle were imaged in histologic sections. Simple, three-layer, fully connected, back-propagation neural networks and four-layer networks with two layers of a shared-weights neural network were most successful at classifying the cells from the images, with 97% and 98% correct recognition rates, respectively. CONCLUSIONS The high accuracy recognition rate shows the potential for direct classification of visual image pixel data by neural networks.
منابع مشابه
Face Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملPattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملIdentification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملPatterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis
Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...
متن کاملAn Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...
متن کاملPatterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis
Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cytometry. Part A : the journal of the International Society for Analytical Cytology
دوره 57 1 شماره
صفحات -
تاریخ انتشار 2004